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Recently, increased computing power has enabled the com-
putation of quite complex morphologies, such as dendriticThis paper deals with numerical solutions of the phase field model

of solidification in two dimensions in the context of dendritic growth. growth in two dimensions [3–9]. There has even been some
Finite difference methods associated with vectorized algorithms are success with computations in three dimensions [10].
employed to solve the phase field equations. The temperature equa- In our previous research [11], we introduced a phase fieldtion is solved by an alternating direction implicit scheme and the

model that is based on positive local entropy production.equation for the phase field by an explicit Euler scheme. We identify
Furthermore, as shown in [12], the model is capable ofa region of parameter space, namely large supercoolings, where

we can compute dendritic morphologies that display steady-state incorporating arbitrary anisotropies of surface tension and
dendrite tip operating conditions that are independent of computa- interface kinetics, believed to play important roles in pat-
tional parameters. Q 1996 Academic Press, Inc.

tern selection during the growth of a dendrite. By means
of this improved phase field model, our attention is directed
toward the quantitative determination of the dendriteI. INTRODUCTION
operating state for dendritic growth from a pure melt
in two dimensions. Specifically, we seek to compute theThe classical approach to modeling a first-order phase
dendritic tip growth velocity, y, and the tip radius oftransition involves finding solutions to the governing par-
curvature, r, for various dimensionless supercoolings, S 5tial differential equations in the domains of the growing
(TM 2 Ty)c/Lo, where TM is the absolute melting point,phase and nutrient phase, subject to boundary conditions
Ty is the absolute far field temperature, c is the volumetricon the unknown moving boundary that separates these
heat capacity, and Lo is the latent heat per unit volume.phases. This is a difficult free boundary problem to imple-
Extensive results of this study are published elsewherement numerically because it involves tracking of the
[13]. Here we present the details of the numerical algo-boundary through a fixed grid, or the implementation of
rithms that we have implemented for computations.solution-adaptive grids that move with the boundary.

First of all, we have achieved an enhanced vectorizedAnother approach is to use the phase field model [1, 2],
algorithm which reduces computational time by not at-which has recently become a popular computational tool
tempting to update the value of the phase field in the bulkfor modeling complicated solidification problems. This
liquid and solid. The considerations that we use to improvemodel avoids explicit boundary tracking by replacing the
the performance of the code are addressed in this paper.PDE for the temperature field and its boundary conditions
Moreover, we have repeated the computations done inon the moving boundary by two coupled PDEs involving
[6] in two dimensions and shown that, for the range ofthe temperature field and a new field, the phase field f
dimensionless supercooling S p 0.5 that they used, thethat keeps track of the phase. The variable f assumes a

representative value in each phase, say, 0 in the solid and results are not independent of computational parameters.
1 in the liquid, and changes rapidly but continuously in In particular, the Peclet number, P 5 vr/2k, where k is
the vicinity of the sharp phase boundary of the classical the thermal diffusivity of the melt, can be calculated with
model. In the asymptotic limit of a suitably thin transition reasonable accuracy, whereas the individual values of v
layer, the classical boundary conditions at the crystal-melt and r are found to vary considerably with the numerical
interface are satisfied. grid size and another computational parameter, «̄, that

For many years, the phase field model did not lead to sig- characterizes the diffuse interface width. (Some evidence
nificant computational results in more than one dimension. for this behavior is also apparent from Table II and Table

III in [6].) The sensitivity of results to computational
parameters is mainly due to the large differences, for* Current address: Technology Modeling Associates, Inc., Sunnyvale,

CA 94086. S p 0.5, among the relevant lengths involved in dendritic
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growth, e.g., capillary length, interface thickness, dendrite pendent control of the anisotropies of surface tension and
interface kinetics [12]; this is possible because f is practi-tip radius, and system size. By analyzing these length scales,

we have discovered that quantitative results independent cally constant, except in the interfacial region, which cor-
responds to f 5 As in the sharp interface limit. As an exam-of computational parameters can be obtained only at large

supercoolings, S p 1, for reasons that will be explained ple, which will be used in subsequent computations, we
choosebelow.

This paper is organized as follows. The phase field equa-
r(u) 5 1 1 dc cos(4u), (6)tions used for computation are presented in Section II.

The numerical implementation for the resulting equations
is discussed in Section III. In Section IV, we discuss the q(u) 5

1 1 dc cos(4u)
1 1 de cos(4u)

. (7)
proper range of physical parameters for which results inde-
pendent of numerical parameters can be obtained.

This corresponds asymptotically to an anisotropic surface
tension, c(u) 5 c̄[1 1 dc cos(4u)], and an anisotropicII. ANISOTROPIC DYNAMICAL EQUATIONS IN
kinetic coefficient, e(u) 5 ē[1 1 de cos(4u)], where dc andTWO DIMENSIONS
de are the corresponding strengths of anisotropy, respec-
tively. For the special case when dc 5 de 5 0, Eqs. (1)–(2)The dynamical equations in two dimensions are [11,
reduce to Eqs. (36) and (37) in [11].12, 14]

The parameter m̄ is the ratio of the capillary length,
do 5 cc̄TM/L2

o, to the kinetic length, rk 5 ck/(ēLo), «̄ 5­u
­t

1
30f2(1 2 f)2

S
­f

­t
5 =2u (1) d̄/w is the ratio of the interface thickness parameter, d̄, to

w and a 5 w/(6Ï2do). Note that m̄ depends only on mate-
rial parameters, whereas both «̄ and a depend on the com-for the dimensionless temperature, u 5 (T 2 TM )/
putational parameters, d̄ and w. The domain size, w, is a(TM 2 Ty), which reduces to the heat equation in the
computational parameter because steady state dendriticregion where f 5 0 and f 5 1, and, for the phase field,
growth should be independent of w.

q(u)
m̄

­f

­t
5 F(f, u) 1 = ? (B(u)=f), (2) III. NUMERICAL IMPLEMENTATION

In solving Eqs. (1)–(2), we choose to discretize the equa-where
tions by using a second-order finite difference scheme on
a grid of uniform squares with grid spacing dx. For the
temporal discretization, a time step dt is introduced. WeB(u) 5S r2(u) 2r(u)r9(u)

r(u)r9(u) r2(u)
D . (3)

assume that initially there is a small circular solid located
at the corner of a domain with dimensions XL and YL in
the x and y directions, respectively. Based on our experi-Equation (2) can be viewed as a second-order parabolic
ence with respect to a square domain, XL 5 YL, and aPDE that contains a ‘‘source’’ term
rectangular domain, YL 5 XL/2, the calculated results of
dendritic operating states for dendrites that grow along

F(f, u) 5
1
«̄2 f(1 2 f)

(4)
the XL direction are found to be insensitive to the two
types of domain for the large supercoolings that we use
(see Section IV), even though dendrites that grow alongFf 2

1
2

1 30«̄aS
u

1 1 (Lo/cTM)u
f(1 2 f)G . the YL direction are impeded and distorted by the walls

of the rectangular domain. This observation is important
because it means that we can save computational time byHere, lengths are scaled in units of the characteristic do-
concentrating our study along the XL direction in a domainmain size, w, and time in units of w2/k.
of rectangular shape. As a result, we adopt a rectangularWith u defined as the angle between a level set f 5
domain for subsequent computations. Vanishing condi-const and a reference direction, presumed to be of crystal-
tions for normal derivatives of both u and f (Neumannlographic significance, i.e.,
conditions) are applied at the boundary; i.e., the dendrite
will grow with reflection symmetry with respect to the x
and y axes. To ensure that the boundary conditions haveu 5 arc tanSfy

fx
DU f 5 const, (5)

negligible influence on the selection of operating state, we
make sure that the domain size is sufficiently large
to simulate a free growth environment. This is done byproper choices for the functions r(u) and q(u) enable inde-
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monitoring the operating state as the dendrite grows along main. Therefore, computational time will be saved by not
attempting to update the values of f for points in the bulkthe XL direction: If a well-defined steady state is not

achieved before the distance between the dendrite tip liquid and solid. This results in computational advantages
that are similar to those obtained by Elliott and Schätzlealong the XL direction and the domain boundary is already

smaller than the corresponding thermal diffusion length who used a ‘‘double-obstacle’’ potential [16].
We have therefore improved the algorithm, originally(equal to the ratio of thermal diffusivity to the tip velocity),

a bigger computational domain is adopted. A steady state developed by researchers at NIST [6, 7] for solving Eq.
(2) by further vectorizing the code as follows: In additionat the dendrite tip is defined when the tip velocity varies

less than 5% over a distance of 10 tip radii. to two components containing the values of f and u, re-
spectively, the data structure associated with each gridSince solving Eq. (2) by implicit time-differencing is very

difficult due to the implicit dependence of q(u) and B(u) point is expanded to include a boolean variable, called
mark. If the value of f at the grid point needs to beon f, we employed an explicit Euler scheme for Eq. (2).

The allowable time step is thus subject to some stability updated, mark 5 TRUE; otherwise, mark 5 FALSE. To
identify the initial diffuse interface for computation, wecriterion which may be more restrictive than that for the

linear part of the equation: dt # (dx)2/(4m̄/q(u)). There- first assign mark 5 FALSE for all of the grid points. Next,
a logic operation, if (f ? 0, 1) (within some tolerancefore, the actual size of the time step is determined by

numerical experimentation. With explicit time-differenc- less than the order of truncation error of the discretized
method), is performed throughout all of the grid points.ing, however, Eq. (1) would be subject to a more restrictive

time step requirement than Eq. (2) because the parameter If the logic operation is true, then mark 5 TRUE is as-
signed to this grid point and to the nearest neighbors ofm̄ usually has a value less than one. Therefore, an implicit

time-differencing that is unconditionally stable, specifi- this point. In the time iteration loop, those points with
mark 5 TRUE are listed as a one-dimensional array (vec-cally, the alternating direction implicit method [15], is em-

ployed for Eq. (1). Rather than solving the phase field torization), allowing the phase field equation to be solved
for only these points, rather than the entire grid. Thisequations over all grid points, as was done in [6], we next

show that the computational algorithm can be further en- results in great efficiency because it takes full advantage
of the architecture of a highly vectorized supercomputer.hanced by considering the physical nature of the phase

field, f. Note that this vectorization process requires a logic opera-
tion, if (mark 5 TRUE), throughout all of the grid points.From the physical point of view, the phase field varies

rapidly across the interface. In most of the computational However, to identify the diffuse interface for the next itera-
tion, it is necessary to perform a logic operation, if (f ?domain, either f Q 0, which denotes bulk solid, or f Q 1,

which denotes bulk liquid; most of these values will remain 0, 1), only for the points within the present diffuse interface.
(Of course, those grid points with mark 5 TRUE mustunchanged at each iteration. From the computational point

of view, F in Eq. (4) has the value zero if f is 0 or 1. first be reverted to be mark 5 FALSE.)
Although two additional logic operations are neededMoreover, the central difference method is applied to eval-

uate spatial derivatives, such that a typical grid point is and more memory is required to store mark and the one-
dimensional array, this modification has significantly spedrelated to its four nearest neighbors only; thus, if the value

of f at grid point (xi 5 idx, yj 5 jdx), fi, j , and its four up the running performance as follows:
On a rectangular domain with a total 1400 3 700 gridnearest neighbors, fi11, j, fi21, j, fi, j11 and fi, j21 , all have

the same value, then all the spatial derivative terms in the points, we monitor the CPU time consumed by updating
the phase field and temperature at each time step. Asequation yield zero. The value of fi, j at time step n 1 1

is, therefore, unchanged from its value at time step n. shown in Fig. 1, about 0.085 s on the Cray C90 are required
to update the values of the phase field parameter at allConversely, if f ? 0, 1 such that F ? 0, then the value of

fi, j at time step n 1 1 is very likely to differ from the value grid points; yet, using our enhanced algorithm to update
the values of f only inside the diffuse interface requiresat time step n. In addition, if fi, j ? 0, 1 then fi, j will

contribute non-zero values when calculating the derivative a computing time of the order of 0.015 s. As a dendrite
grows, the total number of grid points that need to beterms with respect to any one of its four nearest neighbors.

As a consequence, the values of f at the four nearest updated increases due to the growth of total interface
length, with the width of the interface being nearly con-neighbors of a point at time step n 1 1 will possibly differ

from their values at time step n. We conclude that only stant. Therefore the computing time is accordingly in-
creased as well.those points (diffuse interface) for which f ? 0, 1 and

their four nearest neighbors are required to be updated at In Fig. 2, we plot the CPU time needed to update points
in the diffuse interface as a function of the number ofeach iteration. The number of such points are significantly

smaller than the number of total grid points because the grid points in the diffuse interface. As expected from our
algorithm, the CPU time increases roughly linearly withinterfacial region is much smaller than the total bulk do-
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(0.027 1 0.045) P 2. At earlier stages of the computation,
the relative efficiency is even greater, close to a factor
of 2.5.

Although our algorithm requires tracking of the diffuse
interface, it need not be so precise as the classical algorithm
for the sharp interface model. In the free boundary prob-
lem, the moving boundary conditions explicitly involve
geometric properties of the boundary itself, such as the
local curvature and the normal direction. The calculations
of the first- and second-order spatial derivatives are there-
fore needed to be as accurate as possible in order to repre-
sent the boundary condition. As a result, a much finer mesh
is needed to resolve the interface geometry, especially for
a complicated boundary. This requirement, however, is notFIG. 1. CPU time (per time step) consumed for updating the phase
so restrictive for the phase field model since the interfacialfield equations. The cross marks are for updating the values of f for all

of the grid points (1400 3 700). The diamond marks are for updating boundary condition is included implicitly in the phase
the values of f only in the diffuse interface. The square marks are for field model.
updating the values of u at all grid points.

IV. SELECTION OF PARAMETERS

In the discretized form of Eqs. (1) and (2), there arethe total size of the diffuse interface. Therefore, the CPU
four physical parameters: S, m̄, dc , and de . In addition,time would be about 0.085 s (the NIST value) if there were
there are four computational parameters: «̄, a, the mesh250,000 grid points in the diffuse interface, which is about
size dx and the time step dt.one quarter of the total grid points for the whole domain.

As discussed in [11, 12], a free boundary problem isSuch a morphology would represent a very convoluted
recovered in the limit that «̄ R 0 with S, a, and m̄ of orderbody. Up until such time as a dendrite shape becomes
one. That is, the dimensionless temperature at the interfacehighly convoluted in the above sense, our algorithm will
becomes [12],be superior. In our calculations, a dendrite reaches a steady

state when there are about 60,000 grid points in the diffuse
interface; hence it takes about 0.027 s to update f at each

u 5 21@S HLo/(cTM)

(8)
iteration. Therefore, our algorithm has improved the per-
formance by at least three times for the computation of
the phase field alone. On the other hand, because the

1 S[1 2 15dc cos(4u)]
1
r̃

1
ṽ/m̄

[1 1 de cos(4u)]D21J ,calculation of Eq. (1) takes about 0.045 s for each iteration,
the overall computing time needed to solve both of the
partial differential equations is decreased with respect to where ṽ is the dimensionless tip growth velocity (in units
the NIST algorithm by about a factor of (0.085 1 0.045)/ of k/do) and r̃ is the dimensionless tip radius (in units of

do). Therefore, in order to get this model to give results
that mimic those suggested by the asymptotics, proper
selection of the computational parameters is necessary for
practical numerical computations.

For a fixed set of physical parameters and for a given
value of dx, we choose dt small enough to obtain numerical
stability for the f equation, as discussed above. Then, for
«̄ 5 s;A;, f;A;, and k;A;, respectively, we conducted a series of
computations with various dx 5 s;A;, f;A;, k;A;, and
a;;A ;, while keeping the other parameters fixed. The calcu-
lated results of ṽ and r̃ are shown to be sensitive to the
choice of dx for dx . «̄, but insensitive to dx for dx # «̄.
Therefore, we choose dx 5 «̄ for all subsequent computa-
tions. In practical terms, this means that there will be about
eight grid points along any interval where the phase fieldFIG. 2. CPU time (per time step) versus the total number of interface
varies from zero to one. Next, we discuss the choices of «̄grid points for the phase field, according to the enhanced algorithm. The

dashed straight line through the computed data is a least squares fit. and a.
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TABLE I

The Calculated Tip Velocity ṽ, Tip Radius r̃, and Tip
Temperature u for Four Different Values of «̄

«̄ a ṽ r̃ u uu 2 uGTu/u

s;A; 70 0.00955 89.1 20.2200 7.7%
f;A; 70 0.01034 79.9 20.2245 2.3%
h;A; 70 0.01038 78.1 20.2233 1.4%
k;A; 70 0.01035 78.6 20.2219 1.0%

Note. uGT is calculated from the modified Gibbs–Thomson equation,
Eq. (8), using the values of r̃ and ṽ. The last column provides a quantitative
measure of the closeness of the phase field model to the sharp interface
model. The results were computed for parameters S 5 0.9, m̄ 5 0.05,
and dc 5 de 5 0.03 on a domain with XL 5 3.5 and YL 5 1.75. The tip
velocity is scaled by k/do and the tip radius by do.

In Table I, we list some calculated results (after reaching
a steady state) for ṽ, r̃, and u at the interface for several
different values of «̄. The quantity uGT is the inter-
face temperature calculated from the modified Gibbs–
Thomson equation, Eq. (8), by using the computed tip
radius and tip velocity. Hence, the term uu 2 uGTu/u pro-
vides a quantitative measure of the closeness of the phase
field model to the sharp interface model.

As illustrated in Table I, when «̄ is refined from s;A; to
k;A;, the results change very little and are in better agreement
with the asymptotic formula for the tip temperature, which
is valid in the limit «̄ R 0. Since the product of a and «̄
is d̄/(6Ï2do), the values of d̄/do in Table I correspond to

FIG. 3. Comparison of calculated tip velocity and tip radius for twoabout 3, 1.5, 1, and 0.7, respectively.
values of «̄. The diamond marks are for «̄ 5 f;A; and a 5 50. The crossAdditionally, in Table II, we list some results which
marks are for «̄ 5 k;A; and a 5 90, 70, 70 in curves (1), (2), (3), respectively.

correspond to different values of a with the other parame- In curve (1), dc 5 de 5 0.03 and m̄ 5 0.1. Curve (2) is the same as curve
ters remaining constant. The values of d̄/do in Table II (1) except m̄ 5 0.05. In curve (3), dc 5 0.04, de 5 0, and m̄ 5 0.1. The

anisotropies are assumed to have fourfold sinusoidal form. The tip velocitycorrespond to 2.8, 1.7, and 1, respectively.
is scaled by k/do and the tip radius by do.Clearly, Table I and Table II consistently indicate that

the average interface thickness parameter d̄ must be about
the size of do in order to ‘‘resolve’’ the Gibbs–Thomson

the effects of «̄ while keeping the value of d̄ to be aboutequation. This condition is in agreement with results by
equal to do. We have actually studied the effects ofBraun et al. [17] who used the phase field model to do a
changing many parameters over broad ranges. For exam-linear stability analysis. Thus, we proceeded to investigate
ple, Fig. 3 shows that the values of tip velocity and tip
radius for cases with «̄ 5 f;A; and a 5 50 agree satisfactorily
with those calculated with «̄ 5 k;A; and a 5 90, 70, 70 inTABLE II
curves (1), (2), and (3), respectively. Note that we have

The Calculated Tip Velocity ṽ, Tip Radius r̃, and Tip chosen dx 5 «̄ in all cases; therefore, the computational
Temperature u for Three Different Values of a

time for «̄ 5 k;A; is 16 times larger than for the cases with
«̄ 5 f;A;. In light of this, we will adopt «̄ 5 f;A; and a 5 50«̄ a ṽ r̃ u uu 2 uGTu/u
for our subsequent calculations.

f;A; 130 0.00744 73.5 20.188 2.5% Since the tip radius of curvature must be much greater
f;A; 80 0.00763 75.4 20.189 1% than the width of the interfacial region and the computa-
f;A; 50 0.00769 76.7 20.190 ,1%

tional domain must be much greater than the tip radius
in order for the solutions to reach a steady state beforeNote. The results were computed for the parameters S 5 0.8, m̄ 5

0.05, and dc 5 de 5 0.03 on a domain with XL 5 3.5 and YL 5 1.75. the dendrite hits the domain boundary, the true computa-
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where erfc (U) is the complementary error function of
argument U and where we have subscripted S with I to
note the restricted nature of this formula. According to
marginal stability criterion [19, 20], or to microscopic solv-
ability theory [21–26], the operating state of the dendrite
is given by

2kdo

r2v
5 s , (10)

where s is a number given by an appropriate theory; e.g.,
typically, s Q s* 5 0.025.

Combining Eq. (10) with the definition of the Peclet
number gives

ṽ 5 2sP 2 (11)
FIG. 4. A sketch to illustrate selection of parameters for numerical

computations of dendritic growth by the phase field model. r̃ 5
1

sP
(12)

which, together with Eq. (9), constitute a parametric repre-
tional domain is chosen to be XL 5 3.5 and YL 5 1.75 sentation of the dendritic operating state.
in units of w. As a result, there are at least (3.5 3 400) 3 Most experiments to date have been conducted for small
(1.75 3 400) 5 980,000 grid points in our computations values of supercooling, say S p 0.1, which would lead,
for «̄ 5 f;A;. Typically, about one CPU hour on Cray C90 through Eq. (9), to small values of P and, hence, from Eq.
was required to detect a well-defined steady state at a (12) to values of the tip radius r̃ . 10,000. This is well
dendrite tip. outside our computationally accessible range. Similarly,

As illustrated schematically in Fig. 4, we conclude the even the values S p 0.5, used by the NIST group, lead to
following: In terms of the capillary length do, good results values of r̃ that are too large to fall into our computation-
(reasonable independence of computational parameters ally accessible range, except for very large anisotropies of
and tip temperature close to that given by asymptotic anal- surface tension.
ysis) can be obtained under the following conditions: For large supercoolings SI R 1, however, one can show

that Eq. (9) leads asymptotically to
• The grid spacing is about do .

• The phase field, f, changes from 0.05 to 0.95 in about
P p

1
2(1 2 SI)

(13)8 do .

• The characteristic size, w, of the computational domain
is at about 400 do ; the length along the x direction of which for values of SI sufficiently close to 1 will make P
the actual computational domain is 3.5 or 7 times w, i.e., sufficiently large to put r̃ into our computationally acces-
(1400 p 2800) do . sible range.

Actually, for large supercoolings, the situation is more• The dendrite tip radius must be large compared to 8
complicated because capillary and especially kinetic cor-do but small compared to 1400 do .
rections to the dendrite tip temperature become large.

It is this last condition that limits us to large super- Under these conditions, we have derived from Eqs. (8)
coolings, S p 1, for the reasons to be stated next. and (9) the approximate modified relationship

The changes of dendrite tip radius with supercooling can
be estimated by consideration of an approximate analytical

S 5 SI 1
sP(1 1 2P/m̄)

1 1 (Lo/cTM)sP(1 1 2P/m̄)
(14)theory as follows. For infinitely rapid interface kinetics

(m̄ R y) and for a steady state isothermal dendrite of
parabolic shape, the supercooling can be related to the which, together with Eqs. (11) and (12), give parametrically
Peclet number, P, by the following equation due to Ivant- the approximate operating state of the dendrite. Guided
sov (in two dimensions) [18]: by these approximate relationships, we have found that

large supercoolings, e.g., 0.7 # S # 1.1 lead to a computa-
SI 5 ÏfP exp (P)erfc(ÏP), (9) tionally accessible range for r̃. The value of S 5 0.8 corre-
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sponds to an actual supercooling of 347 K for nickel, which
is attainable [27].

Some results for dendritic growth in the range of 0.7 #
S # 1.1 are shown in this section. Figures 5a–c show the
computed evolution of the morphology of a growing den-
drite for various large supercoolings. Our results also show
the presence of a well-defined steady state near the tip
region. An example is shown in Fig. 6 in which the tip
growth velocity, tip radius, and tip temperature are plotted
as a function of time. After an initial transient, each of the
quantities approaches a limiting value. Also apparent in
the figures are some oscillations which are attributed to
numerical noise. In Fig. 7, we show ṽ and r̃ as functions
of the supercooling. Studies in investigating the influence
of other physical parameters on the values of ṽ and r̃ are
straightforward.

V. CONCLUSIONS

In this paper, we have applied finite difference schemes
to solve the phase field model for dendritic growth on two-
dimensional rectangular domains with a uniform square
mesh. Specifically, the equation for the temperature is
solved by an alternating direction implicit scheme and the

FIG. 6. Calculated values of the tip velocity, tip radius, and tip temper-
ature as a function of time. This is for the case S 5 0.8, m̄ 5 0.1, dc 5

de 5 0.03 for which the associated morphologies were shown in Fig. 5a.
The units are k/do for the tip velocity, do for the tip radius, and 1.8 3

105 d 2
o/k for time. There are a total of 350 data points distributed at equal

increments of time. As a guide to the eye, lines are drawn to connect
FIG. 5. Influence of supercooling on the evolution of a dendrite with the points.

parameters m̄ 5 0.1, dc 5 de 5 0.03. The corresponding values of S are
0.8, 0.9, 1.0 for (a) to (c), respectively. The growth shapes are shown at equation for the phase field by an explicit Euler scheme.
time increments of 0.04 for the following time intervals: (a) 0.0–0.4, (b)

An enhanced vectorized algorithm is achieved since only0.0–0.36, (c) 0.0–0.28. At each time level, three contours of f 5 0.1, 0.5,
those grid points inside the diffuse interface need to be0.9 are plotted. Note that actual computations were performed only for the

right half of the figure and the solutions are reflected about the midplane. updated at each iteration. Computation time is reduced
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FIG. 7. Log–log plots of computed tip velocity ṽ and tip radius r̃ as a function of supercooling S for dc 5 de 5 0.03 and three values of m̄. The
straight lines through the values of computed data points are least squares fits. Diamonds are for m̄ 5 0.1, crosses for m̄ 5 0.075 and squares for
m̄ 5 0.05.

7. B. T. Murray, W. J. Boettinger, G. B. McFadden, A. A. Wheeler,by not attempting to update the value of the phase field
and R. F. Sekerka, in Heat Transfer in Melting, Solidification, andin the bulk liquid and solid.
Crystal Growth, edited by I. S. Habib and S. Thynell (Am. Soc. Mech.

Practical computations are found to be possible only for Eng., New York, 1993), p. 67.
large values of supercooling, which results in a dendrite 8. G. Caginalp and E. Socolovsky, SIAM J. Sci. Comput. 15, 106 (1994).
tip radius that is large compared to the thickness of the 9. R. Kupferman, O. Shochet, and E. Ben-Jacob, Phys. Rev. E 50,
diffuse interface but small compared to a domain size. 1005 (1994).
Presumedly, one could employ adaptive moving grids to 10. R. Koyabashi, in Pattern Formation in Complex Dissipative Systems,

edited S. Kai (World Scientific, Singapore, 1992), p. 121, and associ-get results at lower supercoolings, but in some sense such
ated video tape.algorithms run counter to the advantage of the phase field

11. S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell,model, which is supposed to eliminate interface tracking.
R. J. Braun, and G. B. McFadden, Physica D 69, 189 (1993).This would be a good topic for future research, but success

12. G. B. McFadden, A. A. Wheeler, R. J. Braun, S. R. Coriell, andwould probably necessitate multidisciplinary cooperation R. F. Sekerka, Phys. Rev. E 48, 2016 (1993).
between numerical analysts and materials scientists be- 13. S.-L. Wang and R. F. Sekerka, Phys. Rev. E, 53, 3760 (1996).
cause of the complexity of the problem. 14. S.-L. Wang, Doctoral Thesis, Department of Physics, Carnegie

Mellon University, 1995 (unpublished).
15. J. Strikwerda, Finite Difference Schemes and Partial Differential Equa-ACKNOWLEDGMENTS

tions (Wadsworth & Brooks/Cole, Belmont, CA, 1989.
The authors are grateful for discussions with B. T. Murray, A. A. 16. C. M. Elliott and R. Schätzle, Research Report No. 95/05, Center

Wheeler, S. R. Coriell, R. J. Braun, G. B. McFadden, and R. A. Nicolaides. for Mathematical Analysis and Its Applications, University of Sussex,
This work was performed with support from the National Science Founda- UK, 1995.
tion under Grants DMR-9211276 and MCA94P008P. The services pro- 17. R. J. Braun, G. B. McFadden, and S. R. Coriell, Phys. Rev. E 49,
vided by the Pittsburgh Supercomputing Center are also gratefully 4336 (1994).
acknowledged. 18. G. P. Ivantsov, Dokl. Akad. Nauk. SSSR 58, 567 (1947).

19. J. S. Langer and H. Müller-Krumbhaar, J. Crystal Grwoth 42, 11
(1977).REFERENCES

20. J. S. Langer and H. Müller-Krumbhaar, Acta Metall. 26, 1681, 1689,
1. J. S. Langer, private communication, August 1978. 1697 (1978).

21. D. Kessler, J. Koplik, and H. Levine, Phys. Rev. A 34, 4980 (1986).2. J. S. Langer, in Directions in Condensed Matter Physics, edited by
G. Grinsteil and G. Mazenko (World Scientific, Singapore, 1986), 22. E. A. Brener, Sov. Phys. JEPT 69(1), 133 (1989).
p. 165. 23. E. A. Brener and H. Levine, Phys. Rev. A 43, 883 (1991).

3. R. Kobayashi, Bull. Jpn. Soc. Ind. Appl. Math. 1, 22 (1991). 24. B. Caroli, C. Caroli, C. Misbah, and B. Roulet, J. Phys. (Paris) 48,
547 (1987).4. R. Kobayashi, in Computing Optimal Geometries, Proceedings Amer.

Math. Soc. Special Session, edited by Jean Taylor, videotapes, 1991. 25. A. Barbieri and J. B. Langer, Phys. Rev. A 39, 5314 (1989).
5. R. Koyabashi, Physica D 63, 410 (1993). 26. S. Tanveer, Phys. Rev. A 40, 4756 (1989).

27. R. Willnecker, D. M. Herlach, and B. Feuerbacher, Phys. Rev. Lett.6. A. A. Wheeler, B. T. Murray, and R. J. Schaefer, Physica D 66,
243 (1993). 62, 2707 (1989).


